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We analyze the zero-energy sector of the trigonal zigzag nanodisk and corner based on the Dirac theory of
graphene. The zero-energy states are shown to be indexed by the edge momentum and grouped according to
the irreducible representation of the trigonal symmetry group C3v. Wave functions are explicitly constructed as
holomorphic or antiholomorphic functions around the K or K� point. Each zero-energy mode is a chiral edge
mode. We find a texture of magnetic vortices. It is intriguing that a vortex with the winding number 2 emerges
in the state belonging to the E �doublet� representation. The realization of such a vortex is very rare.
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Graphene nanostructure1 has opened a field of carbon-
based nanoelectronics and spintronics alternative of silicon
or GaAs. Carbon is a common material and ecological. Large
spin-relaxation length is ideal for spintronics.2 The basic
graphene derivatives are nanoribbons3–5 and nanodisks.6–10

They correspond to quantum wires and quantum dots, re-
spectively. Regarding a nanodisk as a quantum dot with in-
ternal degrees of freedom, similar but richer physics and ap-
plications are anticipated.11 There are many types of
nanodisks, among which the trigonal zigzag nanodisk �Fig.
1� is prominent in its electronic and magnetic properties ow-
ing to the zero-energy sector.6 The main feature is that it
becomes a quasiferromagnet in the presence of Coulomb
interactions.6 Recently trigonal nanodisks have been experi-
mentally obtained by way of the Ni etching of a graphene
sheet.12 An experimental realization will undoubtedly accel-
erate further experimental and theoretical studies on
graphene nanodisks.

In graphene, the physics of electrons near the Fermi en-
ergy is described by the massless two-component Dirac
equation or the Weyl equation.13–15 Nanoribbons have been
successfully analyzed based on the Weyl equation5 but this is
not yet the case with respect to nanodisks. The Dirac theory
of graphene nanodisks must be indispensable to explore
deeper physics and promote further researches.

The carbon atoms form a honeycomb lattice in graphene.
We take the basis vectors a1= �1,0�a and a2= �1 /2,�3 /2�a
with a the lattice constant �a�2.46 Å�. The honeycomb lat-
tice is bipartite and has two different atoms per primitive
cell, which we call the A and B sites �Fig. 1�. The Brillouin
zone is a hexagon in the reciprocal lattice with opposite sides
identified. We start with the tight-binding model �TBM� only
with the nearest-neighbor hopping t. We ignore the spin de-
gree of freedom in most parts in what follows.

The band structure is such that the Fermi point is reached
by six corners of the first Brillouin zone, among which there
are only two inequivalent points. We call them the K and K�
points. The dispersion relation is linear around them, E��k�
��vF�k−K�� with �=�, where vF=�3ta /2� is the Fermi
velocity and K�=a−1��2� /3,2� /�3� for the K point �K+�
and the K� point �K−�.

The dispersion relation near the K and K� points is that of
“relativistic” Dirac fermions. Indeed, the TBM yields the
quantum-mechanical Hamiltonian13–15

H� = �vF� 0 �k̂x − ik̂y

�k̂x + ik̂y 0
� , �1�

where we have introduced the reduced wave number by k̂
=k−K�. The Hamiltonian acts on the two-component enve-
lope function, ��= ��A

� ,�B
� �. Each Hamiltonian describes the

two-component massless Dirac fermion or the Weyl fermion.
The Weyl equations read

i��t���x� = vF	 · p����x� , �2�

where p�=���k̂x , k̂y�=−i����x ,�y�. The wave function is
given by 
S

��x�=eiK�·x�S
��x�.

The symmetries are as follows. We note that HK�
=	yHK	y and 	zH�	z=−H�, where 	y and 	z are the genera-
tors of the mirror symmetry and the electron-hole symmetry,
respectively.

In terms of the complex variable, the Weyl equation reads

�z��A
K�x� = i��B

K�x�, �z�B
K�x� = i��A

K�x� , �3a�

�z�A
K��x� = − i��B

K��x�, �z��B
K��x� = − i��A

K��x� �3b�

with �=E /2�vF. The envelope functions are holomorphic or
antiholomorphic for the zero-energy state �E=0�.

We analyze a graphene sheet placed in the upper half
plane �y�0� with the edge at y=0. Translational invariance
in the x direction dictates the envelope function is of the
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FIG. 1. �Color online� Trigonal zigzag graphene nanodisk. �a�
The nanodisk size is defined by N=Nben−1 with Nben the number of
benzenes on one side of the trigon. Here, N=5. The A sites are
indicated by red dots. The electron density is found to be localized
along the edges. �b� A vortex texture emerges in the real-space
Berry connection. In this example, the winding number is 2 for the
vortex at the center of mass while it is 1 for all others.
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form �S
��x ,y�=eik̂xxfS

��y�. Due to the analyticity requirement
we obtain

�A
K�x� = CA

Keik̂�x+iy�, �B
K�x� = CB

Keik̂�x−iy�, �4a�

�A
K��x� = CA

K�eik̂�x−iy�, �B
K��x� = CB

K�eik̂�x+iy� �4b�

with CS
� being normalization constants. Hereafter we ignore

such normalization constants.
According to the TBM result, there are no electrons in the

B site on edges. Hence we require �B
� �y=0�=0. By avoiding

divergence at y→
, the resultant envelope functions are

found to be �A
K�x�=eik̂z for k̂�0 and �A

K��x�=eik̂z�
for k̂�0,

with all other components being zero.
The wave number is a continuous parameter for an infi-

nitely long graphene edge. According to the TBM result, the
flat band emerges for

− � � ak � − 2�/3 and 2�/3 � ak � � �5�

around the K� and K points, respectively. The boundary
points ak=−� and ak=� are to be identified since they rep-
resent the same point in the Brillouin zone.

We apply the above analysis to the study of the envelope
functions for electrons in the zero-energy sector of the zigzag
trigonal corner 	Fig. 2�a�
, which is an infinite region sur-
rounded by the x axis and the line with the angle arg z
=� /3. They are holomorphic �antiholomorphic� around the
K �K�� point. Here we discuss envelope functions around the

K point. We start with the solution �1�z�=Ceik̂z for the upper-
half plane. We rotate this by the angle � /3, which presents

us with the solution �2�z�=Ceik̂z exp	2�i/3
 for another half
plane. The trigonal corner is given by the overlap region of
these two half planes, which is described by a linear combi-
nation of these two functions with an appropriate coefficient.
It is to be fixed by imposing the boundary condition: since
the top of the corner is located at z=0, where there is no
atom, we impose �A

K�0�=0. The resultant function is �A
K�x�

=��z� with

��z� = eik̂z − eik̂z exp	2�i/3
. �6�

The phase shift is � at the corner. The envelope function

around the K� point �k̂�0� is given by �A
K��x�=��z��.

We calculate the real-space Berry connection, Ai�x�
=−i����i���. It exhibits a series of vortices 	Fig. 2�b�
, where
the wave function vanishes. It has an infinite number of zero

points at zn= �2�n /�3k̂�e�i/6, n=1,2 ,3 , . . ., around which it

is expanded as ��z�= k̂�z−zn�.
Our main purpose is to apply the above result to the

analysis of the zero-energy sector of the trigonal zigzag
nanodisk �Fig. 1�. The envelope function of the trigonal zig-
zag nanodisk can be constructed by making a linear combi-
nation of envelope functions for three trigonal corners. We
consider the trigonal region whose corners are located at z1
= �L ,0�, z2= �−L ,0�, and z3= �0,�3L�. As the boundary con-
ditions we impose ��z1�=��z2�=��z3�=0. The envelope

function is obtained around the K point �k̂�0� as �A
K�x�

=��z� with

��z� = eik̂z − eik̂Leik̂�z−L�exp	−2�i/3
 − e−ik̂Leik̂�z+L�exp	2�i/3
.

�7�

The envelope function around the K� point �k̂�0� is given

by �A
K��x�=��z��. Note that �B

� �x�=0 identically, as is con-
sistent with the TBM result.6

The wave number is quantized for a finite edge such as in
the trigonal nanodisk. We focus on the wave function 
A

� �x�
at one of the A sites on an edge. For definiteness let us take
it on the x axis. We investigate the phase shift between two
points �x ,0� and �x+ma ,0�

���x,m� = �
2�m

3
+ arg ��x + ma� − arg ��x� �8�

with Eq. �7�. There are N links along one edge of the size-N
nanodisk, for which we obtain precisely ���a /2,N�=Nak.
On the other hand, the phase shift is � at the corner. The total
phase shift is 3Nak+3�, when we encircle the nanodisk
once. This phase shift agrees with the TBM result. By requir-
ing the single valueness of the wave function, and taking into
account the allowed region of the wave number in Eq. �5�,
we find that the wave number is quantized as

akn = � 	�2n + 1�/3N + 2/3
�, 0 � n � �N − 1�/2. �9�

When N is even, there are N /2 states for kn�0 and N /2
states kn�0. When N is odd, there are �N−1� /2 states for
kn�0 and �N−1� /2 states for kn�0. Additionally, there
seem to appear two modes with akn= �� at n= �N−1� /2.
However, they are identified with one another since they are
located at the boundary of the Brillouin zone. There are N
states in both of the cases, as agrees with the TBM result.6

The symmetry group of the trigonal nanodisk is C3v,
which is generated by the 2� /3 rotation c3 and the mirror
reflection 	v. It has the irreducible representation �A1, A2,
and E�. The A1 representation is invariant under the rotation
c3 and the mirror reflection 	v. The A2 representation is in-
variant under c3 and antisymmetric under 	v. The E repre-

(a) (b)

FIG. 2. �Color online� �a� Trigonal corner of graphene. The elec-
tron density is found to be localized along the edges. �b� Real-space
Berry connection for the trigonal corner. A series of vortices are
found to be present.
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sentation acquires �2� /3 phase shift under the 2� /3 rota-
tion. The A1 and A2 are one-dimensional representations
�singlets� and the E is a two-dimensional representation
�doublet�. These properties are summarized in the following
character table:

C3v e 2c3 3�v

A1 1 1 1

A2 1 1 − 1

E 2 − 1 0

�10�

The mirror symmetry is equivalent to the exchange of the K
and K� points. With respect to the rotation there are three
elements c3

0, c3, and c3
2, which correspond to 1, e2�i/3, and

e4�i/3. Accordingly, the phase shift of one edge is 0, 2� /3,
and 4� /3. From this requirement we deduce that the state,
indexed by the edge momentum kn as in Eq. �9�, is grouped
according to the representation of the symmetry group C3v as
follows:


A1�singlet�:�kn
0� + �− kn

0�
A2�singlet�:�kn

0� − �− kn
0� �kn

0 =
6n + 3

3Na
� ,

E�doublet�:�kn
��, �− kn

��, kn
� =

6n � 1

3Na
� , �11�

where kn
� is subject to the condition in Eq. �5�. It follows that

��N + 1�/3� � n � �N/2� , �12�

where �a� denotes the maximum integer equal to or smaller
than a. Some examples read

N 3 4 5 6 7

A1 k1
0 k2

0 k2
0

A2 k1
0 k1

0 k2
0 k2

0 k2
0,k3

0

E �k1
+ �k2

− �k2
−, � k2

+ �k2
+, � k3

− �k3
−, � k3

+.
�13�

The numbers of doublets �E mode� and singlets �Ai mode�
are given by � 1

3 �N+1�� and N−2� 1
3 �N+1��, respectively.

To see the meaning of the wave number kn
� more in detail,

we have calculated the Berry connection for various states,
which we show for the case of N=7 in Fig. 3. Each mode is
found to be chiral. We observe clearly a texture of vortices:
the number of vortices is 6, 7, 7, and 9 for �k2

0�, �k3
−�, �k3

+�, and
�k3

0�, respectively. The vortex at the center of mass has the
winding number 2 in �k3

+�. In general, the total winding num-
ber Nvortex is calculated by

Nvortex =
− i

2�
� dxi

���x,y��i��x,y�
���x,y��2

= N + m − 1 �14�

with m=0,1 ,2 , . . . , ��N−1� /2� in the size-N nanodisk, where
the integration is made along the closed edge of a nanodisk.
There are n vortices along the y axis in the state �kn

��. The
state �kn

��, being the E mode, has a vortex at the center of
mass, where the winding number is 2 in the state �kn

+�. On the
other hand, the state �kn

0� does not have a vortex at the center
of mass, and the combinations �kn

0�� �−kn
0� belong to the A1

and A2 representations, respectively. This statement is dem-
onstrated by investigating the zero points of the envelop
function in Eq. �7�, where vortices appear. For instance, it is
expanded around the center of mass z=z0 as 
�z�
=�n=0Cn�z−z0�n, where the coefficients C0 and C1 are found
to vanish at k=kn

� and k=kn
+, respectively, with C3�0.

Hence the winding number is 2 for k=kn
+.

It should be emphasized that there exists a good agree-
ment with respect to the edge states between the Dirac de-
scription and the exact diagonalization results of the TBM
even for a small system. Indeed, we can easily compute the
phase at each lattice point by exact numerical methods.
Then, comparing it with the result due to the Dirac descrip-
tion, it is easy to see that a good agreement holds between
them. This shows that the real space Barry connection com-
puted by exact numerical methods has the same physical
reality with the one obtained by using the Dirac Hamiltonian.

We have constructed explicitly the wave function for each
state in the size-N trigonal nanodisk. All these states are edge
modes belonging to the zero-energy sector. When Coulomb
interactions are taken into account, the degeneracy among
the zero-energy states is resolved.6 The Coulomb Hamil-
tonian has the trigonal symmetry C3v and the energy spec-
trum splits into different levels according to its representa-
tion, as illustrated in Fig. 4.

There exists additionally the spin degeneracy in the non-
interacting Hamiltonian: The total degeneracy is 2N. The
spin degeneracy is broken spontaneously due to the ex-
change interaction when Coulomb interactions are
introduced.6 The splitting is symmetric with respect to the
zero-energy level. At half-filling, electrons with the identical
spin fill all energy levels under the Fermi energy. Then, the
spin of the ground state is N /2 and it is a ferromagnet. We
show the energy spectrum for N=5,6 in Fig. 4. By tuning
the chemical potential any of them is made the ground state.

The zero-energy degeneracy is resolved by the Coulomb
interaction and the dispersion relation becomes nontrivial.
The time-dependent solution is well known

N=7 N=7

N=7 N=7

k2 (A) k3 (E)

k3 (A)+k3 (E)

-0

0

FIG. 3. Vortex textures in the real-space Berry connection for
the state �kn

�� in the nanodisk with N=7. The representation is indi-
cated in the parenthesis. There are n vortices along the y axis in
�kn

��. A vortex appears at the center of mass for the E mode �kn
��. It

is interesting that the winding number is 2 in the state �kn
+�.
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A
K�t,x� = e−i�En

�t−kn
�x�−kn

�y , �15a�


A
K��t,x� = e−i�En

�t+kn
�x�−kn

�y , �15b�

where En
� is the energy of the state �kn

�� �Fig. 4�. Here we
have suppressed the spinor part. On one hand, the Ai modes
�kn

0�� �−kn
0� represent standing waves. On the other hand, the

E modes �kn
�� and �−kn

�� represent the right-propagating mode
and the left-propagating mode, respectively, for �=�.

Charged particles propagating along a closed edge gener-
ates magnetic field. The electromagnetic interaction is de-
scribed in terms of the electromagnetic potential A, which is
introduced to the system by way of the Peierls substitution
� j→� j + ieAj /�. From the Weyl Eq. �2� we derive

eAi�x� = �Ai�x�/��A
K�x��2 �16�

with Ai�x ,y�=−i�A
K��x��i�A

K�x� in the lowest order of ap-
proximation, where �A

K�x� is assumed to be not modified
from Eq. �7�. The potential Ai�x� exhibits the same texture of
vortices as in Fig. 3. The magnetic field is given by

B�x� = � � A�x� =
2��

e
�

n

�n��z − zn� , �17�

where �n stands for winding number of the vortex at z=zn.
Hence a texture of vortices in the Berry connection leads to a
texture of magnetic vortices. A comment is in order. This
�-function-type magnetic field would be smoothed out in a
rigorous analysis of the coupled system of the Maxwell
equation and the Weyl equation.

It is intriguing that, by tuning the chemical potential, a
vortex with the winding number 2 emerges in the ground
state �kn

+�. As is well known, a single flux quantum has ex-
perimentally been observed in superconductor by using an
electron-holographic interferometry.16 Then, in principle, it is
possible to observe a vortex texture in nanodisk as well.
Furthermore, by attaching a superconductor film one may
observe a disintegration of a vortex into two when the flux
enters into the superconductor from the nanodisk. This
would verify the winding number 2 of a vortex.

In this paper we have classified the zero-energy sector of
the trigonal zigzag nanodisk into a fine structure according to
the trigonal symmetry group C3v. We have explicitly con-
structed wave functions based on the Dirac theory and speci-
fied them by the quantized edge momentum. A texture of
magnetic vortices is found to emerge, which has an unusual
winding number. As far as we are aware of, the vortex with
the winding number 2 has never been found in all branches
of physics. This is because two vortices with the winding
number 1 have lower energy than one vortex with the wind-
ing number 2 in general. In the present case the disintegra-
tion of a vortex into two is prohibited by the trigonal sym-
metry.
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FIG. 4. �Color online� The energy spectrum with Coulomb in-
teractions in nanodisks with N=5,6, derived based on the tight-
binding model. The vertical axis stands for the energy in unit of 1
eV. The N-folded degenerate states in the noninteraction regime
split into different levels according to the representation of the
trigonal symmetry C3v, as indicated. For instance, the positive
�negative� energy levels are for down-spin �up-spin� states. The
ground state is a ferromagnet.
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